Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity
نویسندگان
چکیده
The design and construction of heterojunction photocatalysts, which possess a staggered energy band structure appropriate interfacial contact, is an effective way to achieve outstanding photocatalytic performance. In this study, 2D/2D BiOBr/g-C3N4 heterojunctions were successfully obtained by convenient in situ self-assembly route. Under simulated sunlight irradiation, 99% RhB (10 mg·L−1, 100 mL) was efficiently degraded 1.5-BiOBr/g-C3N4 within 30 min, better than the performance both BiOBr g-C3N4, it has superior stability. addition, composite also exhibits enhanced activity for H2 production. can be attributed intimate interface larger surface area, highly efficient separation photoinduced electron–hole pairs. Based on experimental results, novel S-scheme model proposed illuminate transfer process charge carriers. This study presents simple develop step-scheme photocatalysts environmental related applications.
منابع مشابه
Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles.
As a potential visible-light photocatalyst, the photocatalytic performance of the bulk g-C3N4 synthesized by heating melamine (denote as g-C3N4-M) is limited due to its low specific surface area and the high recombination rate of the photo-induced electron-hole pair. In this paper, a novel g-C3N4-M nanosheet (g-C3N4-MN) obtained from the bulk g-C3N4-M through a thermal exploitation method is em...
متن کاملBlack TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance
Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform...
متن کاملPt‐Decorated g‐C3N4/TiO2 Nanotube Arrays with Enhanced Visible‐Light Photocatalytic Activity for H2 Evolution
Aligned TiO2 nanotube layers (TiNTs) grown by self-organizing anodization of a Ti-substrate in a fluoride-based electrolyte were decorated with graphitic-phase C3N4 (g-C3N4) via a facile chemical vapor deposition approach. In comparison with classical TiO2 nanotubes (anatase), the g-C3N4/TiNTs show an onset of the photocurrent at 2.4 eV (vs. 3.2 eV for anatase) with a considerably high photocur...
متن کاملCuO/CuSCN valence state heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic activity.
CuSCN is applied, for the first time, in a photocatalytic system to form CuO/CuSCN valence state heterojunctions, which exhibited enhanced visible light driven photocatalytic activity and, surprisingly, ultraviolet light restrained activity. Proper migration of photo-generated carriers is proposed to explain the photocatalytic process.
متن کاملCdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity
CdSe nanorods (NRs) with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO2 nanoparticles (Aeroxide® P25) by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV-visible spectroscopy and Raman spectroscopy. TEM imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Catalysis
سال: 2021
ISSN: ['0253-9837', '1872-2067']
DOI: https://doi.org/10.1016/s1872-2067(20)63765-2